fruit_project.utils.datasets.cls_dataset ======================================== .. py:module:: fruit_project.utils.datasets.cls_dataset Classes ------- .. autoapisummary:: fruit_project.utils.datasets.cls_dataset.CLS_DS Module Contents --------------- .. py:class:: CLS_DS(samples: List[Tuple[str, str]], labels: List, id2lbl, lbl2id, transforms=None) Bases: :py:obj:`torch.utils.data.Dataset` An abstract class representing a :class:`Dataset`. All datasets that represent a map from keys to data samples should subclass it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a data sample for a given key. Subclasses could also optionally overwrite :meth:`__len__`, which is expected to return the size of the dataset by many :class:`~torch.utils.data.Sampler` implementations and the default options of :class:`~torch.utils.data.DataLoader`. Subclasses could also optionally implement :meth:`__getitems__`, for speedup batched samples loading. This method accepts list of indices of samples of batch and returns list of samples. .. note:: :class:`~torch.utils.data.DataLoader` by default constructs an index sampler that yields integral indices. To make it work with a map-style dataset with non-integral indices/keys, a custom sampler must be provided. .. py:attribute:: samples .. py:attribute:: labels .. py:attribute:: id2lbl .. py:attribute:: lbl2id .. py:attribute:: transforms :value: None .. py:method:: __len__() .. py:method:: __getitem__(idx: int)